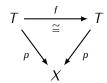
23 | Deck Transformations

23.1 Definition. Let $p: T \to X$ be a covering. A *deck transformation* of p is an isomorphism of coverings



Deck transformations form a group under composition of isomorphisms. We will denote this group by D(p). In this chapter we will compute the group D(p) for a path connected covering p in terms of fundamental groups of X and T. Recall that in Chapter 22 we constructed a functor

$$\Lambda \colon \mathsf{PCov}(X) \to \mathsf{TSet}_{\pi_1(X,x_0)}$$

from the category of path connected coverings of a space X to the category of transitive $\pi_1(X, x_0)$ -sets. We also showed (22.15) that if X is a connected and locally path connected space then this functor is a bijection of sets of morphisms. Since any functor preserves isomorphism, if $f: T_1 \to T_2$ is an isomorphism of coverings of X, then $\Lambda(f)$ is an isomorphism of $\pi_1(X, x_0)$ -sets. The following fact implies that the converse is also true:

23.2 Lemma. Let $F: \mathbb{C} \to \mathbb{D}$ be a functor such that for any $c, c' \in \mathbb{C}$ the map the map $\mathsf{Mor}_{\mathbb{C}}(c, c') \to \mathsf{Mor}_{\mathbb{D}}(F(c), F(c'))$ given by $f \mapsto F(f)$ is a bijection. A morphism $f: c \to c'$ i in \mathbb{C} is an isomorphism if and only if $F(f): F(c) \to F(c')$ is an isomorphism.

As a consequence we obtain:

23.3 Corollary. Let X be a connected and locally path connected space, $x_0 \in X$, and let $p: T \to X$ be a path connected covering. The group of deck transformations D(p) is isomorphic to the group of $\pi_1(X, x_0)$ -equivariant isomorphisms $p^{-1}(x_0) \to p^{-1}(x_0)$.

Proof. Exercise.

In view of Corollary 23.3 the problem of computing the group of deck transformations reduces to the problem of computing the group of G-equivariant isomorphisms of a G-set S. Denote this group by $lso_G(S)$.

23.4 Definition. Let G be a group, and let $H \subseteq G$ be a subgroup. The *normalizer* of H in G is the subgroup $N_G(H) \subseteq G$ defined by

$$N_G(H) = \{ g \in G \mid gHg^{-1} = H \}$$

23.5 Note. $N_G(H)$ is the largest subgroup of G that contains H as its normal subgroup. In particular H is a normal subgroup of G if and only if $N_G(H) = G$.

Recall that if S is a G-set and $s \in S$ then by G_s we denote the stabilizer of s.

23.6 Proposition. Let G be a group, and let S is a transitive G-set. For any $s \in S$ there exists an isomorphism of groups

$$lso_G(S) \cong N_G(G_s)/G_s$$

Proof. Let $f: S \to S$ be a G-equivariant isomorphism. Since the action of G on S is transitive we we have $f(s) = sg_f$ for some $g_f \in G$ (depending on s). We claim that $g_f \in N_G(G_s)$. Indeed, for any $h \in G_s$ we have

$$s(g_f h g_f^{-1}) = f(s)(h g_f^{-1}) = f(sh)g_f^{-1} = f(s)g_f^{-1} = s(g_f g_f^{-1}) = s$$

which shows that $g_f h g_f^{-1} \in G_s$.

Define a map

$$\varphi \colon \mathsf{Iso}_G(S) \to \mathcal{N}_G(G_s)/G_s$$

by $\varphi(f):=g_fG_s$. To verify that φ is well defined we need to check that if $\overline{g}_f\in G$ is another element such that $f(s)=s\overline{g}_f$ then $g_fG_s=\overline{g}_fG_s$. Since $sg_f=f(s)=s\overline{g}_f$ we get $s=s\overline{g}_fg_f^{-1}$ which gives $\overline{g}_fg_f^{-1}\in G_s$. By the observation above $g_f\in N_G(G_s)$, so $(\overline{g}_fg_f^{-1})g_f=g_fh$ for some $h\in G_s$. This gives:

$$\bar{g}_f G_s = \bar{g}_f g_f^{-1} g_f G_s = g_f h G_s = g_f G_s$$

Next, we claim that φ is a group homomorphism. Indeed, if $f, f' \in Iso_G(S)$, $f(s) = sg_f$, $f'(s) = sg_{f'}$ then

$$f' \circ f(s) = f'(sg_f) = f'(s)g_f = sg_{f'}g_f$$

and so $\varphi(f' \circ f) = (g_{f'}g_f)G_s = \varphi(f') \cdot \varphi(f)$. It remains to show that φ is an isomorphism (exercise). \square

23.7 Proposition. Let X be a connected and locally path connected space, and let $x_0 \in X$. For a path connected covering $p: T \to X$ and $\tilde{x} \in p^{-1}(x_0)$ there exists an isomorphism of groups:

$$D(p) \cong N_{\pi_1(X,x_0)}(p_*(\pi_1(T,\tilde{x})))/p_*(\pi_1(T,\tilde{x}))$$

23.8 Note. Recall that a covering $p: T \to X$ is regular if $p_*(\pi_1(T, \tilde{x}))$ is a normal subgroup of $\pi_1(X, x_0)$. In such case the isomorphism in Proposition 23.7 gives

$$D(p) \cong \pi_1(X, x_0)/p_*(\pi_1(T, \tilde{x}))$$

In particular, for the universal covering $\tilde{p}: \tilde{X} \to X$ we obtain $D(\tilde{p}) \cong \pi_1(X, x_0)$.

Exercises to Chapter 23

E23.1 Exercise. For a function $f: X \to X$ by Fix(f) we will denote the set of fixed points of f:

$$Fix(f) = \{x \in X \mid f(x) = x\}$$

Let X be a connected and locally path connected space, let $\widetilde{p} \colon \widetilde{X} \to X$ be the universal covering of X, and let $f \colon X \to X$ be a map. We will say that a map $\widetilde{f} \colon \widetilde{X} \to \widetilde{X}$ is a lift of f if the following diagram commutes:

$$\widetilde{X} \xrightarrow{\widetilde{f}} \widetilde{X}$$

$$\widetilde{p} \downarrow \qquad \qquad \downarrow \widetilde{p}$$

$$X \xrightarrow{f} X$$

Let *S* denote the set of all lifts of *f*.

- a) Show that $Fix(f) = \bigcup_{\widetilde{f} \in S} \widetilde{p}(Fix(\widetilde{f})).$
- b) Let $\tilde{f}_1, \tilde{f}_2 \in S$. Show that the following conditions are equivalent:
 - (i) $\widetilde{p}(\operatorname{Fix}(\widetilde{f}_1)) \cap \widetilde{p}(\operatorname{Fix}(\widetilde{f}_2)) \neq \emptyset$
 - (ii) There exists a deck transformation $g \colon \widetilde{X} \to \widetilde{X}$ such that $\widetilde{f}_2 = g\widetilde{f}_1g^{-1}$
 - (iii) $\widetilde{p}(\operatorname{Fix}(\widetilde{f}_1)) = \widetilde{p}(\operatorname{Fix}(\widetilde{f}_2))$
- c) Let $f: (S^1, x_0) \to (S^1, x_0)$ be a map such that the homomorphism $f_*: \pi_1(S^1, x_0) \to \pi_1(S^1, x_0)$ is given by $f_*([\omega]) = n \cdot [\omega]$ for some $n \in \mathbb{Z}$. Show that Fix(f) consists of at least |n-1| points.