9 | The Product Formula

9.1 Theorem. If (X_1, x_1) , (X_2, x_2) are pointed spaces then

$$\pi_1(X_1 \times X_2, (x_1, x_2)) \cong \pi_1(X_1, x_1) \times \pi_1(X_2, x_2)$$

9.3 Theorem. If $(X_i, x_i)_{i \in I}$ is a family of pointed spaces then

$$\pi_1\left(\prod_{i\in I}X_i,\ (x_i)_{i\in I}\right)\cong\prod_{i\in I}\pi_1(X_i,x_i)$$

9.4 Definition. Categorical product definition.

9.8 Definition. Let $F: \mathbb{C} \to \mathbb{C}'$ be a functor. Assume that F has the property that if an object d with morphisms $p_i: d \to c_i$ is the categorical product of a family $\{c_i\}_{i \in I}$ in \mathbb{C} then the object F(d) with morphisms $F(p_i): F(d) \to F(c_i)$ is the categorical product of the family $\{F(c_i)\}_{i \in I}$ in \mathbb{C}' . In such situation we say the the functor F preserves products.

9.10 Theorem. The fundamental group functor π_1 : $Top_* \to Gr$ preserves products.