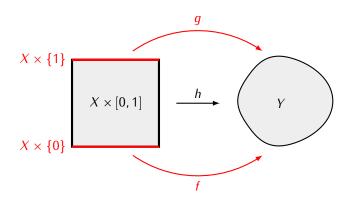
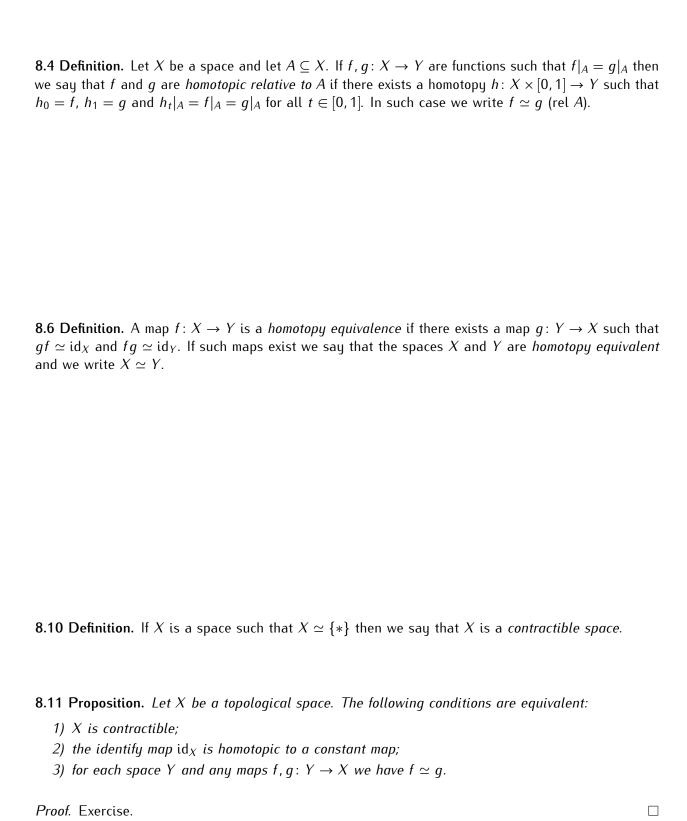
8 Homotopy Invariance

8.1 Definition. Let $f, g: X \to Y$ be continuous functions. A *homotopy* between f and g is a continuous function $h: X \times [0,1] \to Y$ such that h(x,0) = f(x) and h(x,1) = g(x):



If such homotopy exists then we say that the functions f and g are *homotopic* and we write $f \simeq g$. We will also write $h: f \simeq g$ to indicate that h is a homotopy between f and g.



8.12 Definition. A subspace $A \subseteq X$ is a *deformation retract* of a space X if there exists a homotopy $h \colon X \times [0,1] \to X$ such that

- 1) $h_0 = id_X$
- 2) $h_t|_A = \mathrm{id}_A$ for all $t \in [0, 1]$
- 3) $h_1(x) \in A$ for all $x \in X$

In such case we say that h is a deformation retraction of X onto A.

8.13 Proposition. If $A \subseteq X$ is a deformation retract of X then $A \simeq X$.

8.15 Definition. Mapping cylinder and mapping cone.	
8.16 Proposition. For any map $f: X \to Y$ we have $M_f \simeq Y$.	
Proof. Exercise. 8.17 Proposition Let $f: X \to Y$ be continuous functions. If $f \sim a$ then $C_t \sim C_t$	
8.17 Proposition. Let $f, g: X \to Y$ be continuous functions. If $f \simeq g$ then $C_f \simeq C_g$. <i>Proof.</i> Exercise.	

8.18 Example.

8.19 Proposition. If $f, g: (X, x_0) \to (Y, y_0)$ are maps of pointed spaces such that $f \simeq g$ (rel $\{x_0\}$) then $f_* = g_*$.

8.20 Proposition. Let $f, g: X \to Y$ be homotopic maps and let $h: f \simeq g$. For $x_0 \in X$ let τ be the path in Y given by $\tau(t) = h(x_0, t)$. The following diagram commutes:

$$\pi_1(X, x_0) = \begin{cases} \pi_1(Y, f(x_0)) \\ \vdots \\ \pi_1(Y, g(x_0)) \end{cases}$$

Proof. Exercise. □

8.21 Corollary. If $f,g:X\to Y$ are maps such that $f\simeq g$ then the homomorphism $f_*\colon \pi_1(X,x_0)\to \pi_1(Y,f(x_0))$ is an isomorphism (or is trivial or is 1-1 or onto) if and only if the homomorphism $g_*\colon \pi_1(X,x_0)\to \pi_1(Y,g(x_0))$ has the same property.

8.22 Proposition. If $f: X \to Y$ is a homotopy equivalence then for any $x_0 \in X$ the homomorphism $f_*: \pi_1(X, x_0) \to \pi_1(Y, f(x_0))$ is an isomorphism.

8.23 Corollary. If X, Y are path connected spaces and $X \simeq Y$ then $\pi_1(X, x_0) \cong \pi_1(Y, y_0)$ for any $x_0 \in X$, $y_0 \in Y$.