21 Equivalences of Categories

21.1 Theorem. Let X be a connected, locally path connected, and semi-locally simply connected space, and let $x_0 \in X$. The map

$$\Omega \colon \left(\begin{array}{c} \textit{isomorphism classes} \\ \textit{of path connected} \\ \textit{coverings of } X \end{array}\right) \quad \longrightarrow \quad \left(\begin{array}{c} \textit{conjugacy classes} \\ \textit{of subgroups} \\ \textit{of } \pi_1(X, x_0) \end{array}\right)$$

given by $\Omega(p\colon T\to X)=p_*(\pi_1(T,\tilde{x}))$ for some $\tilde{x}\in p^{-1}(x_0)$ is a bijection.

- **21.2 Definition.** A functor $F: \mathbb{C} \to \mathbb{D}$ is an *equivalence of categories* if there exists a functor $G: \mathbb{D} \to \mathbb{C}$ for which the following conditions hold:
 - 1) For each object $c \in \mathbb{C}$ there exists an isomorphism $\eta_c \colon c \to GF(c)$ such that for any morphism $f \colon c \to c'$ the following diagram commutes:

$$c \xrightarrow{f} c'$$

$$\eta_c \downarrow \cong \qquad \cong \downarrow \eta_{c'}$$

$$GF(c) \xrightarrow{GF(f)} GF(c')$$

2) For each object $d \in \mathbf{D}$ there exists an isomorphism $\tau_d \colon d \to FG(d)$ such that for any morphism $q \colon d \to d'$ the following diagram commutes:

$$d \xrightarrow{g} d'$$

$$\tau_{d} \stackrel{\cong}{\downarrow} \stackrel{\cong}{\downarrow} \tau_{d'}$$

$$FG(d) \xrightarrow{FG(g)} FG(d')$$

We will say that C and D are equivalent categories if there exists an equivalence $C \to D$.

- **21.3 Proposition.** A functor $F: C \to D$ is an equivalence of categories if and only if the following conditions hold.
 - (i) For each object $d \in D$ there exists an object $c \in C$ such that $d \stackrel{\sim}{=} F(c)$.
 - (ii) For any objects $c, c' \in \mathbb{C}$ the map $\mathrm{Mor}_{\mathbb{C}}(c, c') \to \mathrm{Mor}_{\mathbb{D}}(F(c), F(c'))$ given by $f \mapsto F(f)$ is a bijection.

Proof. Exercise. □