2 | Categories and Functors

- **2.1 Definition.** A *category* **C** consists of the following ingredients:
 - 1) a class of *objects* Ob(C)
 - 2) for each pair of objects $c, c' \in Ob(\mathbb{C})$ a set of morphisms $Mor_{\mathbb{C}}(c, c')$
 - 3) for each object $c \in Ob(\mathbb{C})$ a distinguished identity morphism $id_c \in Mor_{\mathbb{C}}(c, c)$
 - 4) for each triple of objects $c, c', c'' \in Ob(C)$ a composition of morphisms function

$$\circ: \mathsf{Mor}_{\mathsf{C}}(c,c') \times \mathsf{Mor}_{\mathsf{C}}(c',c'') \to \mathsf{Mor}_{\mathsf{C}}(c,c'')$$

Moreover, the composition of morphisms satisfies the following conditions:

- (i) $f \circ (g \circ h) = (f \circ g) \circ h$, whenever morphisms f, g, h are composable
- (ii) if $f \in Mor_{\mathbb{C}}(c, c')$ then $f \circ id_c = f = id_{c'} \circ f$.

- **2.8 Definition.** Let C, D be categories. A *(covariant) functor* $F: C \to D$ consists of
 - 1) an assignment $F : Ob(\mathbf{C}) \to Ob(\mathbf{D})$
 - 2) for each $c, c' \in Ob(\mathbb{C})$ a function

$$F: \mathsf{Mor}_{\mathsf{C}}(c, c') \to \mathsf{Mor}_{\mathsf{D}}(F(c), F(c'))$$

such that $F(\mathrm{id}_c)=\mathrm{id}_{F(c)}$ for all $c\in \mathrm{Ob}(\mathbb{C})$ and $F(f\circ g)=F(f)\circ F(g)$ for each pair of composable morphisms f,g in \mathbb{C} .

2.11 Definition. Let C be a category. A morphism $f: c \to c'$ in C is an <i>isomorphism</i> if there exists a
morphism $g: c' \to c$ such that $gf = \mathrm{id}_c$ and $fg = \mathrm{id}_{c'}$. In such case we say that g is the <i>inverse</i> of f
and we write $g = f^{-1}$.

If there exists an isomorphism between $c,c'\in \mathbf{C}$ then we say that these objects are *isomorphic* and we write $c\cong c'$.

2.15 Proposition. Let $F: \mathbb{C} \to \mathbb{D}$ be a functor. If $f: c \to c'$ is an isomorphism in \mathbb{C} then $F(f): F(c) \to F(c')$ is an isomorphism in \mathbb{D} and $F(f)^{-1} = F(f^{-1})$.

2.16 Corollary. Let $F: \mathbb{C} \to \mathbb{D}$ be a functor and $c, c' \in \mathbb{C}$. If $F(c) \ncong F(c')$ then $c \ncong c'$.