10 Pushouts and van Kampen's Theorem

10.1 Definition. Definition of a pushout.

- **10.3 Proposition.** Let $c_1 \stackrel{f_1}{\leftarrow} c_0 \stackrel{f_2}{\rightarrow} c_2$ be a diagram in a category C and let $p, p' \in C$.
- 1) If p is a pushout of this diagram and $p' \cong p$ then p' is also a pushout.
- 2) Conversely, both p and p' are pushouts of the above diagram then $p \cong p'$.

Pushouts of topological spaces.

10.5 Proposition. For any diagram of topological spaces $X_1 \stackrel{f_1}{\leftarrow} X_0 \stackrel{f_2}{\rightarrow} X_2$ the pushout exists and it is given by

$$\operatorname{colim}(X_1 \stackrel{f_1}{\longleftarrow} X_0 \stackrel{f_2}{\longrightarrow} X_2) = (X_1 \sqcup X_2)/\sim$$

where \sim is the equivalence relation defined by $f_1(x) \sim f_2(x)$ for all $x \in X_0$.

Proof. Exercise

10.9 Example. The following fact will be used later on. If X is a topological space and $U, V \subseteq X$ are open sets such that $X = U \cup V$ then we have a homeomorphism

$$X \cong \operatorname{colim}(U \longleftarrow U \cap V \longrightarrow V)$$

(exercise). Note that this is not true in general, if U, V are not open in X.

Pushouts of groups.

10.10 Definition. Free product of groups G*H.

10.13 Proposition. For any diagram of groups $G_1 \stackrel{f_1}{\leftarrow} G_0 \stackrel{f_2}{\rightarrow} G_2$ the pushout exists and it is given by

$$\operatorname{colim}(G_1 \stackrel{f_1}{\longleftarrow} G_0 \stackrel{f_2}{\longrightarrow} G_2) = (G_1 * G_2)/N$$

where N is the normal subgroup of $G_1 * G_2$ generated by all elements of the form $f_1(g)f_2(g)^{-1}$ for $g \in G_0$.

Proof. Exercise. □

10.17 van Kampen Theorem. Let (X, x_0) be a pointed topological space and let $U_1, U_2 \subseteq X$ be open sets such that $X = U_1 \cup U_2$. If the sets U_1, U_2 , and $U_1 \cap U_2$ are path connected and $x_0 \in U_1 \cap U_2$ then

$$\pi_1(X, x_0) \stackrel{\sim}{=} \operatorname{colim}(\pi_1(U_1, x_0) \stackrel{i_{1*}}{\longleftarrow} \pi_1(U_1 \cap U_2, x_0) \stackrel{i_{2*}}{\longrightarrow} \pi_1(U_2, x_0))$$

where for k=1,2 the homomorphism i_{k*} is induced by the inclusion map $i_k\colon U_1\cap U_2\to U_k$.

10.19 Example. $\pi_1(S^1 \vee S^1)$

10.20 Lemma. Let X be a space and let U_1 , $U_2 \subseteq X$ be open sets such that $X = U_1 \cup U_2$ and U_1 , U_2 , $U_1 \cap U_2$ are path connected. If $\pi_1(U_1) \cong \{1\}$ and $\pi_1(U_2) \cong \{1\}$ then $\pi_1(X) \cong \{1\}$.

10.21 Example. $\pi_1(S^n)$